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Abstract. A dimer of bound atoms cannot melt, only dissociate. Bulk metals show a well defined first order
transition between their solid and liquid phases. The appearance of the melting transition is explored for
increasing clusters sizes via the signatures in the specific heat and the root mean square of the bond
lengths δB (Berry parameter) by means of Monte-Carlo simulations of Al clusters modelled by Gupta
potentials. Clear signatures of a melting transition appear for N ∼ 6 atoms. Closed-shell effects are
shown for clusters with up to 56 atoms. The melting transition is compared in detail with the dissociation
transition, which induces a second and possibly much larger local maximum in the specific heat at higher
temperatures. Larger clusters are shown to fragment into dimers and trimers, which in turn dissociate at
higher temperatures.

PACS. 61.46.+w Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals –
65.80.+n Thermal properties of small particles, nanocrystals, nanotubes

1 Introduction

The properties of small metal clusters have enjoyed a large
interest over the past years. Their technical application
in catalysis stems from the large surface-to-volume ratio
while their properties differ from those of the bulk mate-
rial raising the fundamental question about the statistical
mechanics of finite systems.

The melting process of small clusters has early on been
identified as the onset of isomer fluctuations [1,2]. More
recent investigations on Ni13−xAlx alloy clusters in the mi-
crocanonical ensemble [3] show the relation between iso-
mer fluctuations and the increase in entropy across the
melting transition. The onset of the melting transition
is marked by the fluctuations into the lowest energy iso-
mer configurations which are measured by the root mean
square bond length fluctuations [4] sometimes referred to
as the Berry parameter [5]. The phase space occupied by
those fluctuations is small for small clusters resulting in
a maximum in the specific heat at somewhat higher tem-
peratures. The maximum in the specific heat in turn is
determined by the onset of isomer fluctuations occupy-
ing a sufficiently large phase space fraction. A detailed
overview of the increase of phase space with increasing
particle number and the classification of isomers in terms
of potential energy surfaces is given in reference [6]. Molec-
ular Dynamics (MD) investigations [7] of the melting tran-
sition of larger AuN clusters with 100 < N < 1000 show
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that the bulk limit is gradually attained in agreement with
experimental [8] findings.

Recently the empirical investigation of the melting of
small Sn [9] and Ga [10] clusters has revealed a possi-
ble stability of the solid phase of the particles beyond
the melting temperature of the bulk material. This re-
sult was interpreted as a consequence of the specific rigid
ground state structure of the clusters and found support
in microcanonical MD calculations for C, Si, Ge, and Sn
clusters [11] as well as for isokinetic MD investigations of
Sn10 particles [12].

In metals the contribution from the conduction elec-
trons to the binding energy has to be modelled by many-
body potentials [13,14], which are numerically more in-
volved than the thoroughly investigated Lennard-Jones
systems [6,15,16]. A prominent example is the Gupta po-
tential (GP) [13], which can be derived in the second mo-
ment approximation from a tight binding model [17] and
which correctly describes the surface contraction observed
in metals:

V ({rij}) =
N∑

i




N∑

j �=i

Ae−p rij −
√∑

j �=i

ξ2e−2q rij



 . (1)

Here N is the number of atoms, i and j are atom labels,
rij = rij/r0 − 1, and rij = |ri − rj | is the modulus of
the distance between two atoms at positions ri and rj .
The parameters have been determined by fitting the ex-
perimental bulk lattice parameters and elastic moduli [18]
as A = 0.1221 eV, ξ = 1.316 eV, p = 8.612, and q = 2.516
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for Al. Distances are measured in units of the bulk first
neighbour distance r0 = 2.864 Å.

The present paper aims to shed light on how the melt-
ing transition evolves in the limit of small clusters. The
method is a MC simulation in the canonical ensemble. A
standard Metropolis algorithm is employed [19,20] with
an update after each random displacement of an atom
within an interval [0, dmax] in all spatial dimensions. dmax

is set to yield an MC acceptance rate of 50 to 60%. The
resulting temperature dependence is roughly dmax ∝ √

T .
The boundary conditions are imposed by a hard wall cube
with linear dimension L. Runs are performed with sam-
pling rates (SR) of up to 8 × 107 steps per temperature
and atom. The fluctuations on the curves shown in the
paper are a measure of the statistical error and appear
near phase transition because of the usual critical slow-
ing down. The ground state energies and configurations
obtained within this method are in good agreement with
earlier results [3,21]. The ground state configurations of
the clusters discussed herein have the same symmetries as
those of the 9-6 Sutton-Chen potentials [22].

An observable commonly studied in the context of
melting transitions is the Berry parameter [4]

δB =
1

N(N − 1)

∑

i,j �=i

√
〈r2

ij〉 − 〈rij〉2 〈rij〉−1, (2)

where the brackets denote the thermodynamic average in
the canonical ensemble. The parameter equation (2) mea-
sures the root mean square of the distance between two
atoms averaged over all pairs. Even short isomer fluctu-
ations with a subsequent return to the ground state can
leave the cluster reordered, i.e., a previously nearest neigh-
bour pair rij may become a second- or third-neighbour
pair after the fluctuation. Such a reordering leads to a no-
table increase in δB allowing for the clear identification
of a melting transition. Note that the Lindemann crite-
rion of melting, which measures the atomic fluctuations
with respect to their equilibrium positions, is usually em-
ployed for bulk systems but is less well suited for cluster
systems [5].

The second observable of interest is the specific heat,
which can be obtained from the thermodynamic averages
of the potential energy V and its square:

C

kB
=

1
Nk2

BT 2

(
〈V 2〉 − 〈V 〉2

)
+

3
2
. (3)

Since the atoms are treated as classical particles the con-
tribution from the kinetic energy is Ckin = 3/2kB per
atom.

In order to obtain a more intuitive understanding of
the melting process a real-time visualisation of the simula-
tion has been implemented. Figure 1 illustrates snapshots
of an Al13 cluster in a volume of (6r0)3 at temperatures (a)
T = 0, (b) kBT = 0.1 eV, and (c) kBT = 0.4 eV corre-
sponding to a solid, liquid, and dissociated cluster, respec-
tively. The graphs show the corresponding normalised pair
distribution functions g(r) (arbitrary units). The ground
state is icosahedral which is different but close to the
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Fig. 1. Normalised pair distribution functions and snapshots
of an Al13 cluster in a volume of (6r0)

3 at temperatures (a)
kBT = 10−4 eV, (b) kBT = 0.09 eV, and (c) kBT = 0.27 eV
corresponding to a solid, liquid, and dissociated cluster, respec-
tively. The pair distribution functions in panel (b) and (c) are
enhanced by a factor of 20 for better visibility.

slightly distorted icosahedral configuration obtained by
first principle calculations [23]. Contacts of the clusters
with the walls are rare events and the pressure is negli-
gible in the solid and liquid phases for sufficiently large
volumes, e.g., L > 4r0 for N = 13.

2 Appearance of the melting transition

A dimer of bound atoms cannot melt, only dissociate. Bulk
metals show a well defined first order transition between
their solid and liquid phases. This phase transition is ac-
companied by a divergence in the temperature dependence
of the specific heat indicating the increase in entropy and
the associated latent heat as well as by a discontinuous
jump in the Berry parameter equation (2). Figure 2 shows
how both signatures evolve [specific heat (a) and Berry
parameter (b)] as the particle number is increased from 2
to 10 atoms.

Al5 is the smallest cluster with inequivalent bonds in
its ground state configuration resulting in the abrupt in-
crease in δB once isomer fluctuations set in at around
kBT ∼ 0.013 eV or T ∼ 150 K. For AlN with N ≥ 6 the
increase in entropy is sufficiently large around a specific
temperature to lead to a local maximum in the specific
heat. As observed previously [3], the isomer fluctuations
leading to the jump in δB occur at lower temperatures
than the maximum in the specific heat. The temperature
of the discontinuity in δB depends on the energy barrier
between the ground state configuration and the lowest en-
ergy isomers [6].

Note that the presence of well defined signatures of
the melting transition in the specific heat for clusters with
N < 10 is somewhat unexpected since the experimentally
investigated NaN clusters [24] appear to show no feature
in the caloric curves for N < 100 and for Lennard-Jones
clusters [16] the corresponding signature disappears for
N < 30.

It is remarkable that the absence of signatures of a
well defined melting transition does not imply that the
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Fig. 2. Temperature dependence of the specific heat (a)
and the Berry parameter (b) of AlN clusters with N =
2, 3, 4, 5, 6, 7, 10. A clear signature of a melting transition is
observed for N ≥ 6 in the specific heat and for N ≥ 5 in
the δB. SR: 4 × 107 steps per temperature and atom.

clusters remain solid up to higher temperatures. For exam-
ple, the real time visualisation of an Al4 particle (within
the MC/GP approach, see Fig. 1 for an illustration) at
T = 0.1 eV/kB ∼ 1160 K reveals that the cluster fluctu-
ates out of its tetrahedral ground state into almost planar
configurations and certainly cannot be considered solid.
The small size of the phase space is responsible for the
absence of a signature of the melting in the specific heat
while the equivalence of all bonds in the ground state con-
figuration result in a featureless δB.

In this sense all clusters investigated here with N ≥ 4
are in a liquid state already at temperatures below the
bulk melting temperatures of Al with Tbulk = 933 K∼
0.08 eV/kB. For N = 2 it is not possible to distinguish
between a liquid and a solid phase. For N = 3 the trian-
gular structure is stable against fluctuations into collinear
isomers up to kBT ≈ 0.15 eV.

The critical value of the Berry parameter at the melt-
ing transition [5] was determined as δB ∼ 0.03−0.05,
which is referred to as the modified Lindemann criterion.
These numbers are consistent with the present observation
for clusters with N ≥ 5, where at the melting transition
a jump occurs from values of δB ∼ 0.03−0.05 to values
of δB > 1.5 [1–3,20,25]. For smaller clusters with N = 3
and 4 the temperature dependence of the Berry parameter
is featureless. For N = 4 at T = 0.1 eV/kB and for N = 3
at T = 0.15 eV/kB the real time rendering of these clus-
ters shows that they cannot be considered solid any more.
At those temperatures the Berry parameter is δB ≈ 0.1.
These findings suggest that a more general sufficient crite-
rion for clusters of all sizes not to be considered solid any
more is δB ≥ 0.1. The latter is close to the value given for
the Lindemann criterion [5].

Multi-step melting [25,26] and isomer fluctuations [12]
involving reordered atomic arrangements in the cluster are
also consistent with that criterion since in both cases at
least a group of atoms does not remain located at their
ground state positions when δB ≥ 0.1.

Both specific heat and Berry parameter in Figure 2
show an increase for temperatures above ∼1800 K accom-
panied by an increase in fluctuations due to statistical
errors. As will be discussed further below in detail these
are signatures of the dissociation transition.

3 Closed-shell effects

The influence of closed shells on the cohesive energies of
metal clusters [6,21–23] and their melting points [8,25,20]
has been a focus of research for quite some time. A closed-
shell cluster has a large gap to the first excited isomer
while adding or removing an atom leads to a number of
degenerate ground state configurations separated by a po-
tential barrier. This manifests itself in a smoother specific
heat anomaly as well as in a jump in the Berry parameter
at much lower temperatures as compared to the closed-
shell counterpart. This is shown in Figures 3a and c for
the sets of N = 12, 13, 14 and in Figure 3b and d for the
sets of N = 54, 55, 56 atoms. The upper panels (a) and (b)
show the specific heat, the lower panels (c) and (d) the
Berry parameter.

Notably the 14 and 56 atom clusters have a very low
barrier between isomers. The real time visualisation re-
veals that these fluctuations occur in Al14 not only by
jumps of the 14th atom on the surface of the Al13 icosa-
hedron but by absorption of the 14th atom into the outer
shell and simultaneous pushing of another atom onto
the surface. In Al56 the 56th atom is absorbed into the
outer shell even in the ground state configuration (see
Sutton-Chen 9-6 in Ref. [22]). This leads to the large
jump in δB at very low temperatures [dash-dotted lines in
Figs. 3c and d]. In Al14 the phase space is sufficiently large
to induce an anomaly in the specific heat [dash-dotted
line in Fig. 3a] at the same temperature. Together with
the main maximum at higher temperatures this may be
referred to as a two-step melting mechanism [25–27].

The narrower specific heat anomaly at the melting
transition and the smaller discrepancy between the maxi-
mum of the specific heat and the jump in the Berry param-
eter for the larger systems in Figures 3b and d illustrate
how the thermodynamic limit is gradually approached as
the cluster size is increased [7,25,28]. Note that for larger
clusters less sampling steps per temperature and atom are
required to obtain smooth curves. The larger phase space
of the larger clusters [6] results in the better convergence
of the observables.

The canonical ensemble as shown for Al13 in Figures 3a
and b yields a somewhat lower specific heat [25] and an
onset of the isomer fluctuations at lower temperatures as
compared with the results for the microcanonical ensem-
ble in reference [3]. The discrepancies can be attributed
to the energy fluctuations in the canonical ensemble that
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Fig. 3. Temperature dependence of the melting transition for
clusters of size N = 12, 13, 14 in (a)+(c) and N = 54, 55, 56 in
(b)+(d). (a) and (b): specific heat. (c) and (d): Berry parame-
ter. Volume L3/r3

0 = 63. SR: 4 to 8× 107 steps [(a)+(c)] and 1
to 2 × 107 steps [(b)+(d)] per temperature and atom.

allow the potential barriers between different isomers to
be overcome at lower temperatures.

4 Ideal gas limit

The well defined high temperature limit, where the sys-
tem has the properties of an ideal gas, yields a test of the
numerical methods and is essential for determining the
latent heat of the evaporation transition in Section 5. Fig-
ure 4 illustrates the large T behaviour of the specific heat
(full line, right scale) and the Berry parameter (broken
line, left scale) for Al2 (a), Al7 (b), and Al13 (c). Since the
Boltzmann weight can be expanded as exp{−V/(kBT )} =
1− V/(kBT ) + O(T−2), the specific heat attains the limit
as C = 3

2kB + a T−3 +O(T−4) while the Berry parameter
is δB = δ∞+b T−1+O(T−2) with δ∞ = 0.3768(1). Here a
and b are volume and particle number specific constants.
An analytical scaling analysis reveals that δ∞ depends on
the container geometry but neither on its volume nor the
particle number.

5 Dissociation

Between the low temperature liquid phase and the high
temperature ideal gas limit Figure 4 shows clear maxima
both in the specific heat and the Berry parameter for Al2,
Al7, as well as for Al13. The feature is generic for all cluster
sizes and can be associated with the dissociation transi-
tion. The dissociation anomaly in the specific heat stems
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Fig. 4. Temperature dependence of the specific heat (full line,
left scale) and the Berry parameter (broken line, right scale)
of a 2 (a), 7 (b), and 13 (c) atom Al cluster. The dissociation
anomaly is always present while the signature of the melting
transition evolves with system size. SR: 4 × 107 [(a)+(b)] and
2 × 107 (c) steps per temperature and atom.

from the increase in entropy across the dissociation tran-
sition while the Berry parameter is enhanced through the
short-time elongation and return of an atom from and to
the cluster. The latter involves an energy fluctuation and
is consequently suppressed in a microcanonical or isoki-
netic ensemble.

Figure 5 shows the container size dependence of the
dissociation transition of an Al13 cluster for volumes of
L3 = (4r0)3, (6r0)3, (10r0)3, (15r0)3, and (20r0)3. For
L3 = (4r0)3 the density N/L3 = 0.0144 mole/cm3 is only
a factor 7 smaller than that of bulk Al with 0.1 mole/cm3.
This leads essentially to a suppression of the evaporation
transition, which is replaced by a smooth crossover (see
also Fig. 6). Note that even macroscopic particles do not
exhibit a sharp evaporation transition in a finite, constant
volume imposing a finite, temperature dependent gas-
phase partial pressure. As a consequence there is a liquid-
vapour coexistence region which is given by the width of
the specific heat anomalies shown in Figure 5. The snap-
shot shown in Figure 7b in Section 6 is taken in the liquid-
vapour coexistence region of Al13 for L3 = (20r0)3, where
liquid fragments of the cluster coexist with evaporated
single atoms.

Both the anomaly in the specific heat (upper panel in
Fig. 5) and the Berry parameter (lower panel in Fig. 5)
increase with increasing volume and become narrower. In
an infinite volume the partial pressure of the gas phase is
zero and both quantities are expected to exhibit a sharp
peak at the transition. Note that the fluctuations of the
graphs in Figure 5 increase with increasing volume as a
consequence of the enlarged phase space and thus limit
the simulations to small volumes. The melting transition



R. Werner: Melting and evaporation transitions in small Al clusters: canonical Monte-Carlo simulations 51

0 0.1 0.2 0.3 0.4
k

B
T [eV]

0

0.4

0.8

1.2

δ B

2

4

6

8

10

12

14

C
 [

k B
/A

to
m

]

0 1160.5 2321 3481.5 4642
T [K]

Gupta potential for Al
13L/r

0
=20

L/r
0
=20

15

610

4

15

10 6

4

(a)

(b)

Fig. 5. Sample volume dependence of the dissociation transi-
tion for four different sampling volumes of L3/r3

0 = 43, 63, 103,
153, 203. Both the anomaly in the specific heat (upper panel)
and the Berry parameter (lower panel) increase with increas-
ing volume as a consequence of the increased phase space. SR:
2 × 107 (L3/r3

0 = 43, 63, 103) and 4 × 107 (L3/r3
0 = 153, 203)

steps per temperature and atom.

0 0.05 0.1
-2.6

-2.4

-2.2

0 0.2 0.4 0.6 0.8 1

k
B
T [eV]

-3

-2

-1

0

1

E
V
(T

) 
[e

V
/A

to
m

]

0 2321 4642 6963 9284 11605
T [K]

Gupta potential for Al
13

L/r
0
=4,6,10,15,20

melting

diss
ocia

tio
n

ideal gas

E
B

Fig. 6. Caloric curves as obtained from integrating the specific
heat data in Figure 5 for sampling volumes of L3/r3

0 = 43, 63,
103, 153, 203. The inset shows the determination of the latent
heat ∆Emelt ≈ 0.08 eV of the melting transition. The dash-
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much larger than the binding energy, i.e., kBT � 2.60088 eV.

is independent of the container volume. This is expected
since the pressure in the system is essentially zero when
all atoms are condensed [29].

For sufficiently small densities or, equivalently, large
volumes the latent heat of the melting transition is much
smaller than the energy released in the evaporation tran-
sition [29]. For Al13 this becomes apparent from the
caloric curves of the total enclosed system shown in
Figure 6, which are obtained by simply integrating the
specific heat (Fig. 5) for a fixed volume, i.e., EV (T ) =
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Fig. 7. (a) Temperature of the maximum of the specific heat
at the evaporation anomaly as a function of the cluster size at
a constant density of ρ = 1.625× 10−3 r−3

0 . The line is a guide
to the eye. The minimum at N = 6 implies that those clusters
dissociate first while trimers and dimers are stable to much
higher temperatures. Larger clusters dissociate predominantly
into dimers and trimers at intermediate temperatures as shown
by the snapshot in panel (b) for Al13 at kBT = 0.25 eV. SR
for the determination of Tmax: 108 steps per temperature and
atom.

∫ T

0
C(T ′)dT ′ − EB. The binding energy per atom for

N = 13 is EB = 2.60088 eV. Since the transitions are
smeared out the determination of the latent heat is some-
what ambiguous. Extrapolation of the linear segments of
the caloric curves above and below the melting transition
(dashed lines in Fig. 6) and reading off the energy dif-
ference at the temperature of the specific heat maximum
yields ∆Emelt ≈ 0.08 eV.

The evaporation transition is very broad for the vol-
umes (densities) under investigation and the ideal gas
limit (Eideal(T ) = 2/3kBT , dash-dotted line in Fig. 6)
is only attained for kBT > 1 eV even for L/r0 = 20.
For L/r0 = 4 the ideal gas limit is reached only for tem-
peratures much larger than the binding energy per atom,
i.e., kBT � EB. Consequently the total latent heat of the
evaporation can only be given approximately as ∆Eevap ≈
2.26 eV, which corresponds satisfactorily to the potential
energy expectation value 〈V 〉(Tevap) = 2.35 eV near the
onset of the evaporation transition at kBTevap = 0.15 eV.

Results for Al55 (not shown) are similar with slightly
narrower evaporation anomalies compared with those of
Al13 with comparable densities N/L3. Closed shell ef-
fects do not play an observable role in the evaporation
transition.

From the above discussion follows that the dissociation
anomalies in the specific heat usually dominate in size over
those of the melting transition especially for clusters that
do not have closed-shell structures. An example is Al7 as
shown in the middle panel of Figure 4. The jump in δB

is yet well pronounced confirming its sensitivity to the
melting transition [5].

6 Fragmentation

On closer examination the curves of the specific heat
of Al13 for sufficiently large volumes show another broad
local maximum at higher temperatures. For L/r0 = 20 as
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shown in Figure 5a this maximum is found near kBT ∼
0.36 eV. This effect is readily explained by the fragmen-
tation of the cluster into dimers and trimers at tempera-
tures above the onset of the evaporation transition near
kBTevap = 0.15 eV. The dimers and trimers in turn disso-
ciate at temperatures near the second local maximum. For
smaller volumes (larger densities) the effect is not visible
because the signatures become very broad.

To quantify the effect, Figure 7a shows the max-
ima of the evaporation anomaly of the specific heat as
a function of the cluster size at constant densities of
ρ = N/L3 = 1.625 × 10−3 r−3

0 , which correspond for
N = 13 to L/r0 = 20 as shown in Figure 5a. The tem-
perature of the specific heat maximum increases with in-
creasing size for N ≥ 6 but for N ≤ 6 shows a non-
monotonous decrease with increasing cluster size. In other
words, especially the dimers and trimers are more sta-
ble with respect to larger clusters. The superposition of
their specific heat maxima at kBTmax = 0.415(5) eV and
kBTmax = 0.275(5) eV for the dimer and trimer, respec-
tively, leads to the second maximum of the curve for
L/r0 = 20 in Figure 5a. Figure 7b shows a snapshot
of Al13 at kBT = 0.25 eV with L/r0 = 20, where a
dissociated single atom, two dimers, and one trimer are
visible together with a (liquid) pentamere. Qualitatively
comparable results are found for Al55 (not shown) with
kBTmax = 0.23(1) eV at similar densities.

Note that the stability of the dimers and trimers to-
wards dissociation is an entropic effect since the binding
energy per atom decreases monotonously with decreasing
size for N ≤ 13 [30]. Consequently the observed presence
of dimers and trimers is not in contradiction with the
results from density functional theory calculations [31],
which find the single atom emission to be energetically the
dominant dissociation channel. The dimers and trimers
are at least in part formed by fusion of single evaporated
atoms. On the other hand, this fragmentation behaviour is
not directly transferable to experiments on Al clusters be-
cause the Gupta potentials do not yield the correct planar
structure for N ≤ 5 [23,31].

7 Conclusions

The results from the Monte-Carlo simulation of AlN clus-
ters modelled with many-body GPs reveals the appear-
ance of a distinct feature of the melting transition in the
specific heat and the Berry parameter for N ≥ 6. The
energy fluctuations in the canonical ensemble lead to an
onset of isomer fluctuations at lower temperatures than
in the microcanonical ensemble. AlN clusters with N ≥ 4
are liquid at the bulk melting temperature. The present
analysis suggests that a generalised sufficient criterion for
clusters not to be considered solid any more is a Berry
parameter of δB ≥ 0.1. Larger clusters with closed-shell
configurations exhibit sharper signatures of the melting
transition than others.

For higher temperatures clusters of all sizes undergo
a dissociation transition which is accompanied by con-
tainer volume dependent anomalies both in the specific
heat and Berry parameter. Dimers and trimers are more

stable towards dissociation than larger clusters. The de-
tails of the features depend on the potential but the qual-
itative results are generic. For example, MC simulations
with GPs and parameters for Au yield qualitatively very
similar results.

The author thanks M. Blom, P. Schmitteckert, G. Schneider,
D. Schooss, M. Vojta, and P. Wölfle for instructive discus-
sions. The work was supported by the Center for Func-
tional Nanostructures of the Deutsche Forschungsgemeinschaft
within project D1.5.
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